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Abstract

The performance of traditional RAID Level 5 arrays is. for many applications. uInacceptably poor
while one of its constituent disks is non-functional. This paper describes and evaluates mecha-
nisms by which this disk array failure-recovery performance can he improved. The two key issues
addressed are the data layout, the mapping by which data and parity blocks arc assigned to phvsi-
cal disk blocks in an array, and the reconstruction algorithm, which is the technique used to
recover data that is lost when a component disk fails.

The data layout techniques this papc: investigates are instantiations of the declustered parity orgba-
nization, a derivative of RAID Level 5 that allows a system to trade some tol its data capacity hr1
improved failure-recovery performance. We show that our instantiations Of parity dICCluIsterilnL

improve the failure-mode performance of an array signilicantly, and that a parity-declu.stCrCd
architecture is preferable to an equivalent-size multiple-group RAID Level 5 oirganization III envi-
ronments where failure-recovery performance is important. The presented analyses alsNo include
comparisons to a RAID Level I (mirrored disks) approach.

With respect to reconstruction algorithms, this paper describes and briefly evaluates two% alterna-
tives stripe-oriented reconstruction and disk-oriented reconstruction, and establishes that the latter
is preferable as it provides faster reconstruction. The paper then revisits a set of prcviously-pro-
posed reconstruction optimizations. evaluating their efficacy when used ill cnjullctiol with the
disk-oriented algorithm. The paper concludes with a section on the reliability versuS cCapacit\
trade-off that must he addressed when designing large arrays.
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I. Introduction

The performance of a storage subsystem during its recovery from a disk lailure i•s crucial to

applications such as on-line transaction processing (OLTP) that mandate hbth high I/O pcrlfr-

mance and high data reliability. Such systems demand not only the ability to recover from a disk

failure without losing data. but also that the recovery process (I) IuLnction withdut taking the sys-

tern off-line. (2) rapidly restore the system to its fault-free state. and (3) have minimal impact on

system performance as observed by users. Condition (2) ensures that the system's vulnerability ,to

data loss is minimal, while conditions (I) and (3) provide for on-line failure recover\. A g,•()d

example is an airline reservation system, where inadequate recovery from a disk crash can cause

an interruption in the availability ol booking information and thus lead to Hlight delays and/or re' -

enue loss. Furthermore, because fault-tolerant storage systems exhibit degraded perforrmanc'e

while recovering from the failure of a component disk. the fault-free system load must be kept

light enough for performance during recovery to he acceptable. For this reason. a decrease in per-

formance degradation during failure recovery can translate directly into imnproved lault-tree per-

tormance. With this in mind. the twin goals of the techniques discussed in this paper are It

minimize the time taken to recover the content ol a failed disk onto a replacement: that is. tw

restore the system to the fault-free state, and to simuiltaneouslyv minimiie the impact of failure

recovery on the performance of the array (throughput and response time) as obbservCd blw users.

Fault-tolerance in a data storage subsystem is generally achieved either by di.%k mirr,,rmi

i Katzman77, Bitton8g. Copeland89. Hsiao9 l. or by Iariry emdmin,., [Arulpragasanlx(). Gib-

son93. Kim86. Park86. Pattersong81. In the former, one or more duplicate copies (f each user data

unit are stored on separate disks. In the latter. commonlv known as Redundant Arra\'s ol Inexpen-

siveI Disks (RAID) Levels 3. 4. and 5 [1Patterson8X9. a small portion (1 the array's pihyscal capac-

ity is used to store an error correcting code computed over the data stored in the array. The

additional storage required for redundancy can be as large as 251/, ol the capacity o) the arra\, but

is often much smaller. Studies IChen9Oa. Gray9Oj have shown that. due to stiperior performlance

on small read and write operations, a mirrored array. also known as RAID Level I. can deliver

1. Because od industrial interest in usin( thie RAID acronym and because )I iheir concrns111 ahoul
the restrictiveness o1 its "'Inexpcnsive" componenti, RAID is sonietinies repiwied as an aclnllVii h u
Redundant Arrays "i Indcpendenl Disks IRAID9)31.



higher performance to OLTP workloads than can a parity-based array. Urnflortunately. mirroring, is

substantially more expensive - its storage overhead for redundancy is I()()7,: that is. Ifour Or

more times larger than that of typical parity encoded arrays. Furthermore. recent studies I Stodol-

sky93, Menon92a. Rosenblum9 l have demonstrated techniques that allow the small-write per-

formance of parity-based arrays to approach that of mirroring. This paper. therefore. locutSes on

parity-based arrays. but includes comparisons to mirr~oring where meaninullul.

We do not recommend on-line failure recovery I or applications that can tolerate (i-111i1n

recovery, since the latter restores high performance and high data reliability mnore quickly. For this

reason. we focus the discussion and analysis in this paper around OLTP applications: these clearly

benefit from the failure-mode performance improvements that are the primary tropic ol this paper.

Application areas with very different workload characteristics, multimedia for example. can ailso

benefit from improved reliability and availability in the storage subsysteml. W\.e defer the evidluai-

tion of the proposed techniques tinder such applications to future work.

Section 2 of" this paper provides background on redundant disk arrays. Sectiom 3 introduces

parity declustering and Section 4 describes data layout schemes for implementing parity declus-

tering. Section 5 describes the performance evaluation environment. Section 6 describes alterna-

tive reconstruction algorithms, techniques used to recover data lost when a disk fails. Sectiim 7

then presents performance evaluation. The first part of this section compares the pe.rflormiancC ()I a

declustered-parity array to that of an equivalent-sized multiple-g•oup RAID Level 5 liira. and the

second part investigates the trade--off between disk capacity overhead and failure-recCover pierfor-

mance in a declustered-parity array. Section 8 describes and evaluates a set tol moditication's that

can he applied to the reconstruction al•orithm. Section 9 discusses techniques Ifor selcCiIn It a%\Vs-

tern configuration based on the requirements of the environment and application. Section It) suml-

marizes the contributions ol this paper and outlines interesting issues f'or future work.

2. Redundant disk arrays

Patterson. Gibson. and Katz I PattersonX81 present a taxonomy oif redundant disk array atrchi-

tectures, RAID Levels I through 5. Of these. RAID Level 3 is best at providing large ,amnounts ofI

data to a single requestOr with high bandwidth, while RAID Levels I and 5 are most appropriate

for highly concurrent access to shared files. The latter are preferable fo)r -)LTP-class applications.
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Figure 1: Disk array architectures.

since OLTP is often characterized by a large number ol independent processes cunculrcntly

requesting access to relatively small units of data ITPCAS91. For this reason and because o) [te

relatively high cost of redundancy in RAID Level I arrays. this paper lotuses On architcctures

derived from the RAID Level 5 organization.

Figure Ia and Figure I b illustrate two possible disk array subsystem architecturcs. Today's

systems use the architecture of Figure lia, in which the disks are connected via inexpensive. low-

bandwidth (e.g. SCSI fANSIX6[) links to an array controller, which is conmecred via ()ie (it mMOW

high-bandwidth parallel buses (e.g. HIPP[ I ANS191 1) to one or more host computers. Array con-

trollers and disk busses are often duplicated (indicated by the dotted lines in Figure I so that they

do not represent a single point of failure I Menon93 1. The controller functionality can also be dis-

tributed amongst the disks of the array JCao93j.

As disks get smaller IGibson921, the large cables used by SCSI and other bIs interlaces

become increasingly unattractive. The system sketched in Figure lb ollers an alternative. It usC,

high-bandwidth serial links for disk interconnection. This architecture scales to large arIays n1t10e

easily because it eliminates the need for the array controller to incorporate a large number ()I

string controllers. While serial-interlace disks are not yet common. standards for them are eenrg-

ing (P1394 [IEEE931, Fibre Channel [Fihre9• I1. DQDB [IEEE89I). As the cost of high-bandwidth

serial connectivity is reduced. architectures similar to that of Figure lb may supplant today's

short, parallel bus-based arrays.
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Figure 2: Data layout in at 5-disk array employing the lefti-symmetric RAID Level 5 organiz~ation.

In both ori-anizatitons. tile array controller is responsible [or all systemn-related acti vity: C(I il-

trollingz individual disks. maintaining redundant information. executing re(IICt] L uete taINsfers. an11d

recoveringy from disk or link failures. The functionality of' anl array controller canl also hc i mplc -

menited in software executing onl the subsystenlfs host or hosts. Tile algori-thmrs and analy~ses pil-c

sented in this paper apply to all array controller implementations.

FiLgure 2 shows an arrangement of' data and parity onl tile disks of anl array sii theIIL Uie t-'l

symmetric" variant oI* the RAID Level 5 architectures IChen9(ob. Lee') I), Lo~ically conltig.uou.\

user data is broken down into blocks and striped across thle disks to allow forI con1currIent hc\s 1

independent processes IivnyX7j. The shaded blocks. labelled Pi. store thle paritV (cumlat11111ve

exclusive-or) co~mpuited over corresponding data blocks, labelled Di.i' through Dfi.3 An individ-

ual block is called at data unit if- it contains user datat. at jmritv utnit itI it Contains panl-ty, and Ni ni p1

a unit when the datalparity distinction is not pertinent. A set of datia units and theircirep d n

parity unit is referred to ats at parity11 .trP(1.

Since every Update to at data unit implies that at Parity unit Mnust allSo Ie up1daited. NMal wrt

operations req~uire fou1.r disk operations: pre-read and write of' thle data to cornlpute \\hich hit Illi

the data tunit have been toggled. followed by at pre-read and write of thle parliv tinit Iit togleth

corresponding bits. To avoid contention for a single parity disk. the assignment of parlit blocks ito

disks rotates across the array. As Section 6.2 discusses, the unit of data striping. the unit ofl parn.tyv

rotation. and the unit of' reconstrtiction access need riot be all the same. Ini particular. bie unti o l

data striping should be determined by the array\s expected workload IChen)( )b I

Because disk failutres are detectable I RtttersonXX. (ii s ui93 . inarras of! disks co nst ituile an

4



erasure channel IPeterson72l. and so at parity code can correct any s~ineleI disk failure. To sco hs

assume that disk number two has failed and simply note that

(Pi = Di.0(B D. I1 $Di.2 (E)Di.3) => (Di.2 = Di. (B ~Di. I (BPOB Di.3

Ail array containing at failed disk canl be restored to) its fault-free state by successi vel recon)I-

structing each block of the failed disk and storing' it onl a replacement drive. This Is i-en erally pecr-

formed by a background process in either thc host or the array controller. Note that anl array need

not be taken off-line to implement the reconstruction of a failed disk. because recmi structioni

accesses can be interleaved with user accesses to data on non-jailed disks. anld ec~ause, u1ser

accesses ito data on the failed disk can be serviced "(on-ihe- II * v b immediate rc~onlstruction oI theC

indicated unit(s). Once reconstruiction is complete, thle array can agai n tolerate the lossI an% sin-

vle disk. and so is avain fault-free. albeit with at diminished number ofonI me-in spareC dksUntil thle

faulty drives can be physically replaced. Gibson and Patterson I Gibson93 I1 sho(w that at small imm-

ber of spare disks suffice toprovide ithigh degeer fpoeto gis aals nrlt~l ai,
arrays (>70 disks). Althougrh the above (ireanizatioll canl be easil v extended to toler'ate multi p1[fe

disk failures. this paper focuses onl singile-failure toleration.

3. Parity declustering 2

The RAID Level 5 organization presents two problems lor cont~l U)U.S-operatn(I m svstcnis like

oL-mP First. the load Increase experienced by surviving drives In the presenceý i'f a di.Sk Ilai~lur Is

severe. Specifically. each user read operation that reCLu~ests data from thle failed dri-ve invo)kes a

read operation on every other disk in the group. and so the read load increase In the presncei ()I

f~ailure is 1I ()(/ . Similarly a user write operation to at t-ailed data unit MuLst invo(keý aI iead On eve r\

other drive in order to be able to compute thle new parity for thle targeted pan t\ st-Irpe. Th1is

chanL'cs the four accesses normally needed to perform [the write into one acces's per uvvn

drive, and hence the write load Increase in the presence oI failure is 25',; FiThe easiest vay ito

2. Parity (leclusieri 1W is also known as Cluswered RAMl. We prefer the fo~rier termn as"if ~ i ii 111k
Usaive in earlier wo~rk mn mirrored -arrays lTeradataS5. LivnyX7. (Opciands~) wherec user data awid
redundancy i nkimnalion are -dec lustered" iver mor e than the mi ni nial c d llciii n ()I disks.
3. The write-load increase is not in fact 25(/ because when a user writes data or, which the coii-c
sp( inding, parity has failed. no) paritly update is perlnrnied. This inians thiai sonlic ac'sIII
degraded modle do) less wo~rk than they would in fault-Iree niomte I NLA2 I. This effecits nvere
propoirtional to the size of ihe array (C ). and is siiiall fir lihe array sizes wec consider inI this palem.
andI so we neglect it.



understand this is to consider a hypothetical user workload that sends r read requests and w write

requests to each disk in the array, In fault-frce mode, each user write request translates into four

accesses. and so each disk sees a total workload of r+4w accesses. In tie presence of disk failure.

this load increases to 2r+5w accesses, indicating that read workload has doubled anod write work-

load has increased by 257,. For a workload emphasizing small accesses iand consistinlL () SO';

reads on a 40-disk array, this evaluates to an overall load increase of about 6)'/, .

It'a spare disk is available for a reconstruction process to rebuild lost data onto. then surviv-

ing disks must also bear this additional load. This load increase experienced by the surviving

disks during reconstruction necessitates that each disk's fault-free load be light enough that the

surviving disks will not saturate when a failure occurs. Disk saturation is in general unIIacceptable

because most applications mandate a minimum level of responsiveness: the TPC-A benchnmark

ITPCA891, for example. requires that 90'17 of all transactions complete in under two scconds.

Long queueing delays caused by disk saturation can violate these requirements.

The second problem with RAID Level 5 arrays is that at moderate to high user xvorkhoadcs.

they require a relatively long period of time to recover from a failure: that is. to reconstrtic t thC

entire contents of a failed drive ;'nd store it on a replacement. This is because the Oload inlClea.ise

associated with the failure cia cause even a moderately loaded array to appr(oach ,atutii in.

When this occurs. little disk bandwidth is available for reconstruction. and so the process o)

recoveringe the data takes a long time. During this period of ti me tie arrav is h(th opcrat ing at

reduced performance and vulnerable to data loss due to a second lailure. and so it I.,, essential that

the reconstruction period be minimized.

Tile (Ieclustered parity I Munt1/90. H-olland92, Merchant'-2. NLe92 I disk a.riay (irLan ia/a• l

addresses these problems. For a given nIumber of disks, C.( a decluistered parIty oreal'/it-io

allows the failure-induced load increase on the surviving disks to be reduced by any iniegral lac-

tor between 2 and C- I inclusive. This is achieved by increasimng fthe arnoint ofI redundantll inflr-

mation stored in the array, and so it can be thoulght'O its trading srie of •n, arra\ s data capacil\

for improved performance in the presence of disk failure.

Referring again to Figure 2, note that each parity tinit protects C- I data units. xv herc ( i.,, Ilh

number of disks in the array. If instead the array were organized such that each pant\ unilt p[I-

(1
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Figure 3: Declustering ia parity Stripe of Size f ()Ll urVI o Ilr anrray of seven disk~s.

tected some smaller number oIf data units. say G- I then moreI- of thle arraV's capacity wVould be

consumed by parity. hut the reconstruction of at single data unit Would rerIluile that thle h1ost or Coll-

troller read only G- I units instead of GC1. As illustrated inl FiguLre 3. par-ity decILuStCrInck Canallo

he viewed ats the distribution of' the parity stripes comprisimn, a logical RAID Level 5 array onl G

disks over a set of' C physical disks. The advantag.e ofI this rearrllanCemen~t is that notL everyV SUrvr-V

ina, disk is involved in the reconstruction 01 a particular data unit: C-C disks arlC ellef 11CC to do0

other work. Thus eachi survivint! li~sk*> deeraded-miode loaid IS IlUIt IplIeI d IW aI fato iI I (;-1 ( '-I )

relative to RAID Level 5. The t raction ((;- I )/((C- I ) IS referrecd to ats thle t(lc(/IIt('rjm,''O nio. and is,

denoted hy ot. More speciuically, parity declu.Stering redtuce s thle degraded-niode wVKorklod
Iincrease due to user reads from a factor of 2.0) to a factor of I +(x. and thle workload increcase due 10

writes from at factor of 1 .25 to a factor of' 1+0 .25(x.

The declusterine, ratio canl he miade smaller eithier by increcasinge C for at fixed G as hIowll Inl

Fimire 3. or by decreasing G for at fixed C. As of is miade smaller, performance dur-Ine f klure1-

recovery Improves since the load increase on each stirviving disk' diminishes., but more of (the

array'.s capacity is coII~nsumd by parity. Many o1 thle perf ormiance plots in Subsequent sections atro.

presented with ot on the x-axis.

Whe11 G = 2 (the minim irn allowable value) decluIsteredL parrty redtrLIcs tomroiWi ic

the parity unit for each parity stripe is computed ats the XO R over (,II\ v ie data unit. Note lo\ '-

7



ever that since the array consists ol a large number of parity stripes, the mirror copy of each disk

is distributed over the array rather than being localized to one disk. Thus parity declustering with

G = 2 is essentially the same as interleaved dec'hstering (a technique for distributing the backup

copies in arrays o' mirrored disks [Teradata85. Copeland89. Hsiao9l I), the only difference heirg

in the mechanism used to select the disks upon which the backup copy oIl each data unit resids,,,.

At the other extreme, G = C (ox = 1.0). parity declustering is equivalCnt to RAID Level 5. Thu,,

parity declustering can be seen as delining a continuum o)f design points between RAID L,vcl 5

and mirroring, with the capacity overhead being increased and the Iailure-modc performancc

being improved as G is reduced.

A few other studies have looked at improving failure recovery performance via techniques

similar to parity declustering. Teradata [Teradata851 defined and implemented interleaved dcclI.s-

tering for mirrored disks, which was subsequently evaluated by Copeland and Keller C('opc-

land891. Muntz and Luii [Muntz901 first proposed applying declustering to paritv-hased arraVs.

but left open the problem of implementation. specifically appropriate data lavouLts. N,-, and Matt-

son [Ng92] developed a data layout solution concurrently with the research reported in this paper.

using essentially the same technique as is described in Section 4. Our paper provides a more thor-

ough treatment of many implementation issues. but does not address one interesting issue men-

tioned by Ng and Mattson: the interaction of parity decltisterin.g with di.stributed vxarir..

jMcnon92bj. We believe this topic merits further examination. Reddv and Banneriec I Rctdd"l) I

also proposed a technique for implementing a [Orm a parity declustering where the dcclustcrinl

ratio is fixed at approximately 0.5. Merchant and Yu I Merchant921 descrihed a subsah.•ntiall\ ilI -

terent but equivalent-performance implementation of parity declusterin. which we discuss in

detail in Section 4.3.

4. Disk array data layout for parity declustering

In most disk array systems, the array controller (whether implemented in hardlwarc or I.', a

device driver in the host operating system) implements an abstraction of the array its ,a linieatr

address space. A disk-managing application such as a file system views the disk array,.s data, units

as a linear sequence of' disk sectors that can he read or written. Parity units typically dio noW appCar

in this address space: that is, they arc not addressable by the application program. The array con-

S - - -• i i a I I I I I I I II II•x



troller translates addresses in this user space into physical disk locatioms idisk idcnrti I ier,, lind disk

offsets) as it performs requested accesses. It is also responsible Ifr perkormini the redundanc\-

maintaining accesses implied by application write accesses. This mapping of an applicatlin's hw-

ical unit of stored data to physical disk locations and associated parity locations is relerred to as

the disk array's lavout. In this section we discuss goals for a disk array ,layout. pres,,en laN out I 'Ir

declustered parity based on balanced incomplete block designs, and contrast it to it litýmut pro-

posed by Merchant and Yu [Merchant92l which supports more confintrations o1 large arra\s, at

the cost of higher complexity.

4.1. Layout goodness criteria

Extending from non-declustered disk array layout research ILce90). Dihble'()0. wc haL\ve idell-

tified six criteria for a _,ood disk array layout.

1. Singlefailure correcting. No two stripe uniLs in the same parity stripe may reside tin the ,.amec

physical disk. This is the basic characteristic of an' single-failure-toleratiiw redundanc% or~a-

nization. In arrays in which groups )il disks have a common failure nmode. such is p(ý%%Cr Of

data cabling, this criteria should be extended to prohibit the alh)cati( n 'l umtils imf ýnmc pant%,

stripe to two or more disks sharing that common failure mode (SchuleV. (60,1m)(•3 1.

2. Distributed recovern workload. When any disk tails, its user workload should be evenl\ dis-

tributed across all other disks in the array. When replaced tr repaired. its reconstructIAMI ýo-k-

load should also he evenly distributed.

3. Distribured parity. Parity information should he evenly distributeLd acloss thUe ((Iia h1tlarL "

parity update load.

4. Efi-cient mtapping. The functions mapping a file system .s logical block addre'ss to iph\sicil

disk addresses for the corresponding data tunit and parity stripe, and the aippro~priateinvets,

mappings, must be efficiently implementable: they should cmnsume neither '\cý",s,, e, conmpu-

tation nor memory resources.

5. Large write optilmi.ation. The layout should ensure that when I user petlnin s| \1,.ict'ha

the size of the data portion of a parity stripe and starts om a parity stripe hbundai \. it t,, i•,,,blc

to execute the write without pre-reading the prior contents of any ldisk data Since ith nc\% pal

9K



ity unit depends only on the new data. this criterion requires that it he possible to simply com-

pute the new parity in memory and write it to the appropriate disk location. Another way of

stating this criterion is that the allocation of contiguous user data to disk data units should colr-

respond to the allocation of disk data units to parity stripes.

6. Maximal parallelism. A read of contigUoUs user data with size equal to a data unit times the

number of disks in the array should induce a single data unit read on all disks in the array

(while requiring alignment only to a data unit boundary). This insures that maximunm parallel-

ism. and therefore minimum response time. can be obtained.

Criterion six should not he interpreted as placing constraints on the size of the data unit in the

array: it makes recommendations only about the assignment of consecutive data units to disks.

Using more than one disk to service a read operation increases the positioning overhead cumnula-

tive seek time and rotational delay) incurred by the read. but reduces the data transfer time. It the

amount of data transferred from each drive is relatively small. and other requests are waiting! to

access the array, then the parallel transfer of the access will lead to signilicantly lower throughput

because of this extra positioning overhead. In this case. higher throughput would be achieved by

servicing multiple accesses concurrently. with each accesses tisinlig fewer drives. However if a

very large read is serviced by a small number of disks, the response time of tile read will be v'ery

long due to the lack of parallel data transfer. Thereflore. the stripe unit size should be selected

according to the characteristics of the expected workload IChen9I)hj. and the layout policy should

not influence this selection.

The best way to understand the value f criterion six is to consider the ramifications of disre-

garding it. After the characteristics of the expected workload have been used to delermine tlhe

appropriate data unit size, it may still be the case that there Occur some user accesses large enough

to span all the disks in the array. If criterion six is ignored. the data units of at very large contigu-

ous read could he allocated over a possibly small subset of the disks. (This is consistent with cri-

,,'!rion live if G is much smaller than C. ) This could render the file system or application pro•ram

unable to achieve high transfer bandwidth even for very large contiguous reads, and so the

response time of these reads would be many times longer than necessary. Criterion six provides a

very simple model fIOr tile systems and applications to ensure fast transfer f]or large objects.
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Finally, note that the first four criteria deal exclusively with relationships between stripe units

and parity stripe membership, while the last two make recommendations for the relationship

between user data allocation and parity stripe organization. A file system is. of course, not

required to allocate contiguous user data contiguously in the array's address space. In this sense

the array controller has no direct control over whether or not the last two criteria are always met.

even if it is implemented as a device driver in the host. The best that can be done is to meet these

last two criteria for data units that are contiguous in the address space of the array.

4.2. Layouts based on balanced incomplete block designs

The primary goal in designing a layout strategy for parity declustering is to meet the second

goodness criterion: every surviving disk in the array should absorb an equivalent fraction of the

total extra workload induced by a failure, including both accesses invoked by users and recon-

struction accesses. An equivalent formulation is that the same number of units he read from each

surviving disk during the reconstruction of a failed disk. This will be achieved if the total nublher

of parity stripes that include a given pair of disks is constant across all pairs of' disks. that is. if

disks number i andj appear together in a parity stripe exactly n times for any i andj. where n is

some fixed constant. As suggested by Muntz and Lui. a layout with this property can be derived

from a balanced incomplete block design IHallXl61. This section shows how such a layout may he

implemented.

A block design is an arrangement of v distinct (lb jects into b tuples 4 . each containing k ele-

ments. such that each object appears in exactly r tuples. and each pair of objects appears inl

exactly XP tuples. For example. using non-negative integers as objects. a block design with b = 5.

v=5, k=4, r=4. andX1, = 3 is given in Table 1.

This example demonstrates a simple form off block design. called a un 1 1lch'tc block h'vi,,',i.

which includes all combinations of exactly k distinct elements selected from the set (H1 v objects.

The number of these combinations is (k' ,. Note that only three of v k. b. ir and k1, are -ree var-i-

ables since the following two relations are always true: hk = ,,r. and rUk-I) = A1,(r-I). The first of

4. These luples arc called blocks in fhie block design literature. We avoid this name as il cotllicts
with the coimmonly held definition of a block as a contiguous chunk of data. Similarly we use A.
instead of the usual X, for the number of ruplcs containing cach pair o1 objccts to avoiid co•llict
with the common usage olf , as the rate of arrival olf user accesses at the array.
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Tuplc Number Tuple
() 0, I1.2.3

1 _ (I. 1,2.4

2 0.1.3.4
3 0.2.3.4
4 1.2.3,4

Table 1: A sample block design on live objects with four objects per tuple.

()1lset DISK() DISKI DISK2 DISK3 DISK4

DO0 DO. D.2 2

1 30 D4.0 D4.1 D4.2
Figure 4: Example data layout in a declustered parity organization

these relations counts the objects in the block design in two ways. and the second counts the pairs

in two ways.

The layout associates disks with objects and parity stripes with tuples. For clarity, thle -ollow-

ing discussion is illustrated by the construction of the layout in Figure 4 from the block design in

Table I. To build a layout, we find a block design with v = C. k = G. aind the minimum pos.ihle

value for b. The mapping identifies the elements olfa tuple in a block design with the disk num-

hers on which each successive stripe unit of a parity stripe is allocated. In Figure 4. the first tuple

in the design of Table I is used to lay out parity stripe 0: the three data blocks in parity stripe (0 are

on disks (), 1. and 2, and the parity block is on disk 3. Based on the second tuple. stripe I is On

disks (). I. and 2. with parity on disk 4. In general. stripe unitj of parity stripe i is assigned to the

lowest available offset on the disk identified by tie jdi element of tuple i mud 1h in the block

design.

It is apparent from Figure 4 that this approach produces a layout that violates the distributed

parity criterion (3). To resolve this violation, we duplicate the above layout G times (four times

for the example in Figure 4), assigning parity to a different element of each tuple in eac" duplica-

tion. as shown in Figure 5. This layout, the entire contents of Figure 5. is further duplicated tintil

12



Data Layout on Physical Array Layout Derivation from Block Design

Parity Stripe TUPLE

0 0, 1. 2. 1 PrIN -T
I - 41 Block

Otffset D)ISKO I)SKI I)ISK2 I)ISK3 I)ISK4 .. 7' O. . . ]4 /•f O. I.1 ". ]4 Desi-ii

0 0.1) X)0.I M75271 P O 0. 2. 4 Tahle
1 P 4 1. 2. 4

2 )2.0 D2.1 1) 1 )2 P
ý3. D~)14.0 #D4I P4 0. ..

4 1)5.0 D)5.1 P5 D5.2 )6.2 th o. 1. 42. 4

. )AL =) .0 M 6 7 1797 3
6 D)8.1 P8 D)9.2 2 . 1 Full

7 1)8.1 D'.0) D)9. I P9 1)9ý2 I .~ lc1 1 Bh•K:k
X 1lo.) PIO 1)10.1 1D10.2 DIV2, 2
9 ).1.•. ) . ) )I I) P. 1. 2. tJ _s .2il

10 D)12.0 P12.. .,. II . IM. Tlc

13 1414 T o P 4 D .2_ 7 T
13 D1. l4 2. 4
14 P17 D)17.0 D)18.0) D)81 118.2,
i5 Ltd FP9 9.0 11. D19. 1[ 0 1) , ,

1 0. 1) . 2 4
17 0 1 4C=5-. G =4 is o. . 4

Figure 5: Full block design table for a parity declustering organization.

all stripe units on each disk are mapped to parity stripes. We reler to one Iteration o1 this layout

(the first four blocks on each disk in Figure 5) as a hbock i, e.ign rhic. and one complete cycle (all

blocks In Figure 5) as a tiull block dcsign table.

Of course, if the block design has a very large number of tuples. then the size •d ome lutll table

can exceed the size of the array. This results in violations of criteria two and three. Hence. it is

ncc',s,,ary to find an appropriately small design for each combination of C and (;.

It is easy to verily that the layout of Fiiure 5 meets the first [our of the criteria: (I I Not tIwi

stripe units from the same parity stripe will be assigned to the same disk because no tuple 1 n the

block design contains the same element more than once. (2) The failure-inIduced wovrkload i.,,

evenly balanced because each disk appears together with each other disk in exacily Ap pal-i1.

stripes in one block design table. This property implies that when any disk fail,. exactly kv,, stripe

units must he read from each other disk in order to reconstruct the missing data lor that table.

Since the I ilaure-induced workload is balanced in each table. it is balanced over Ihe cntire arrav.

(3) Parity is balanced because over the course of one full table, parity is alssq.ned to each elemcent
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of each tuple in the block design exactly once (refer to the boxes labelled "'parity" in Fig~ure 5)>.

Since each element appears exactly Gr times in the full table, each disk is assigned a parity unit

exactly Gr times over the course of the full tahie. Again, since parity is hahanced in every lull

table, it is balanced over the entire array. (4) While it is not guaranteed that a block design will

exist for every possible combination oflC and G. nor that the number of blocks will be sulticientl\

small that the size of a lull table will not exceed the size of thc array, we have idcntilied accept-

able block desigzns for all combinations of C and G up to 4() disks. and for many of th~e possible
combinations beyond5. Section 9 discusses the problem.of designi ng larger arrays.

As previously mentio~ned. criteria live anld six are dependent on the assignm'ent ,,l user data

tunits to units in the address space of the array, and so a data layout mechanism can not• guarante,'

that they will be met. Assuming that this user data mapping is sequential. that is. that suc.cesive

blocks of user data are mapped to the successive data units of th~e arrayvs address space'. Whe ,ab, xe

layout meets criterion five (the large write optimi/ation , but f ails to meet criterion silx (maximum

parallelism). To see this, note that since consecutive user data is always consecutive within a par-

ity stripe, a write of G- I user data units alig.ned on a (;- I unit boundary in the address spaice ,I the'

array will always map to the complete set of data units in some panty stripe, and so the lar,.' write

optimization can be applied. However. Figure 4 shows that readiing ('€5. in this case• ,ucce,,,i\ e

user data units starting! at the unit marked DO.U results in disks (I and I b~einu used twic•.e, and disks

:• and 4 not at all, and hence criterio•n six is violated.

As illustrated in Figure 6. it is possible to meet criterion six by employing a user-data map-

ping similar to Lee's left-symmetric layntit for non-declustered arrays i Lee&)II. but this causes the'

layout to violate criterion live. This mapping works by assigning each sticcessive user data bliock

to the birst available data unit on each successive disk. thereby utuaratlleeiiwg Ihat criterin ,,i is,

met. It causes criterion live to he violated because successive user data blocks may be assi,,ned to,

differing parity stripes.

Since typical OLTP transactions access data in small units iTP('AX91., large accesses atccout|

for a small fraction of the wonrkload. typically arising fro•m decision- support •r array'- mainenance

5. We arc c~onstruc~ling a (latabakse ol block desig'ns derived Irnim tihe sources dcscribd in Sect'ion
4.4. At the tinme of publication., ihis daiahase is available via anonlV luous lip l i~ u Ilp.cs,.ciiiutl~tid
(internel address 1 2X.2.20(. 17¾) in Hie bile projeci/ncciar-io/Dec'lusiermti)wH dala[basIlari.Z
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O(hicu DISKO) DISKI DISK2 DISKI 1)15K4
0) 1DO DI D12 P) P -Q- PariNI\(;-miw I
I T T 7 D P
2 DI() 131 1312 DX p

3 D15 D316 D17 D13 P
4 D20 D21 P DIS D4
S D25 D20 P-4E~ - Par~il (oup p7

WTI A D22 P I

7 D5 DI6 D27 P )1

Figu re 6: Mlee t In .! criterion lxvIal t- s v mImetiri c pan t v- dccl LIsier la\l uIIt(L .

The figure11 shows thie parity srripews that are (locate(' byv tile tirst ttwo( It'rcitlems ()t the )(
d1esign table. tvith data Llili-ts' lfappe(1 in the stYle of Lee :% ct-~n~lt lavout L'c'9I /. Fmr tar-
I .t-. the data units are inarked with their identifiers in the addre.S.A pa e of thc array. ratlier thai,
their paritv .%tripe I'D and parin-stripe o~ftfset t.s in7 Fig~ure 4 (mild Figu're 5. NVote that the hitoi iimia
i .n parin group 7 (Ire not sequentiail in the arrav s data (lddre~vs .pa e. w. crierion 171-C i\ Vjoldtcd~.

functions rather than application transactions. Thus. 1"r OLTP environments, aj 1mino0rit\ 01 LISCI'

accesses touch more than one data unit. and reads that access a number ()I data 1n.1110 ComlpahiZ&C

to C are rarer still I Ramakrishnlan92 I. Therefore the henelit 01F aIChieVIne1 criterionl SIX Inl the layout

would he marginal in the OLTP workloads we are emphasiziing. However, we have tohservecd thait

under user workloads where large reads are more common. the Fakilure to mleet critermio six. com1-

bined with the F'act that a declustered panity array must skip over more parity units when servicim-w

a read large enough to access multiple data units F'rom multiple disks. cauIses the respons 0:m.o

these large reads to be significantly longer in parity declUStering than tin RAID Level 5. For- exlam-

pie. We defer to future work the prohlem oF simultaneously mieeting both criterion live and1L Crite-
6

nion six

4.3. Layouts based on random permutations

Merchant and Yu iMerchant92l have independently developed an array layout strate'uv bor

declustered parity disk arrays. This section briefly descrihes their layou~t strategy and compares it

to the block-design based approach developed ahove.

6. We nlote that o)ne promising approach to Improving the response n ine (it large reads \km~ild he I(I
o~ptimize the o)rdering oF tuptes in the hio)ck design and elemients in eacth tuple in oirder to niaxini/c
[he adherence to criterion six without giving up adherence to criterion lIve.
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Their approach distributes failure-induced workload (criterion two) and parity (criterion

three) over the disks in the array by randomizing the assignment of data and parity units to disks.

The layout detines a linear address space consisting of units numbered () through BC- 1. where B is

the number of' units on a disk and C is the number of disks in the array. Every (;G[ unit in this

address space (units number G- I. 2G- I. 3G- 1. etc.) contains parity for the previous G- I units. I1

the assignment of these units to disks were truly random. then there would he no guarantee that

the units comprising a parity stripe all reside on different disks (criterion one). Instead. their lay-

out uses a set of randmn pe'rmultations on the disk identifiers to assign units to disks.

Define a set of random permutations of the integers from 0) to C- I as f•ollows: P,. the /tth per-

mutation in the set. maps the integer a to P,1,,. where (0 < a < C and (0 < P,, < C. as illustrated:

P , : I ( 0 . ... C - I ) ( P ,1.1), P ,. I . . P 11, c. i

To map the location of the id' data unit. let n = i/CJ andj = i mad C. The physical locatiwol o)

unit i is offset n into the disk with identifier Pn.J Thus the permutation P,, is used to identily the

disks on which units number nC through 07+ I )C- I reside.

When C is a multiple of G. no parity stripe will span more than one permutation. Since the

elements of each permutation are distinct, the units comprising a parity stripe will all reside on

different disks, and so criterion one is met. If C is not a multiple of G. then using each permutation

R = LCM(C.G)/G times sequentially, where LCM() is tile least-conmnmon-muL|liple functionl.

ensures that no parity stripe spans two different permutations. again meeting tile needs of criterio0n

ofne. The fact that the set of permutations used to map an array is selected randomly implies both

that panty blocks are randomly distributed, and that each parity stripe is mapped to a set of disks

chosen randomly from the (C),possible combinations, ensuring that criteria two and three are also

met. Criterion four is met as long as the permutation P,, can be co mputed efficientlv. Oerchanl

and Yu present an algorithm for this that operates by controlling the exchange phase of1 a series o(f

applications of' a shuffle-exchange network with random bits derived from a Iinear-coiwruential

random number generator. While certainly requiring substantial computation, this alheorithi•n•s

asymptotic computation needs grow slowly with respect to C and G. As in the block-design hased

layout of Figure 5, criteria five is met ar I six is violated by this permutation-based layout.

We have verified by simulation that this layout yields array performance essentially identical
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to that of the block-design based layout. The advantage of this algorithm. 1hen. is that ii i.s ahle to

generate a layout for arbitrary C and G. whereas the block design approach is limited to those

combinations of C and G for which a design can he found. The disadvantage is the relatively large

amount of computation a host or controller must do to compute a physical disk address every time

a unit of data is accessed. By ý av of contrast. the block-design based algorithm computes phvsl-

cal disk addresses by a table lookup and a few simple arithmetic operations.

4.4. Choosing between layouts

Complete block designs such as the one in Table I are easily generated. but in m1ot caossc,

they are too large to be useltil. The number of blocks in a complete design .. Is In general so

large that the block-design-based layout fails to have an efficient mapping. For example. a 4() disk

array with l107,/ parity overhead (G=10) mapped by a complete block design will have about one

billion tuples in its block design table. In addition to the ridiculous amount of memory relluired to

store this table, the layout generated from it will meet neither the distributed parity nor distributed

reconstruction criteria beca.,se even large disks rarely have more than a few million sectors. For-

tunately. there exists an extensive literature on the theory of ba/uned icompnlhc hNo k dc Ji.,M

(BIBDs). which are simply designs having fewer than C tuples.

The construction of BIBDs is an active area of research in combinatorial the rv. and there

exists no technique that allows the direct construction of a design with an arbitrarily-spccilied sct

of parameters. Instead, designs are generated on a case-by-case basis. and tables of known desunis

jHanani75. HalJ6. CheegO. Mathon9gj are published and periodically updated. These tables are

dense when v is small (less than about 45). but become gradually sparser as v increases. Hanani

]Hanani751, for example, gives a table of designs that can be used to generate a layout lor an\

value of G given C not larger than 43. and fOr many combinations with larger C.

Since the block design approach is computationally more eflicient than the random-pernmuta-

tion approach, we recommend that it be used if the array can be conligured using vadues 01 C and

G for which an acceptably small block design is known. When a system's goals cannot be met

using any such conliguration. then. of course use the random-pernmtation aluorithni. Section 1)

discusses the problem of conligiring vcry large arrays.
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Synthetic RAID Disk Even(
Reference Striping Simulation Driven
Generator Driver Moidule Siniuialor

Figure 7: The structure of raidSim.

5. Evaluation methodology

All analyses in this paper were done using an event-driven disk array simulator called raid-

Sirn Chen9Oh. Lee9l 1, originally developed for the RAID project at U.C. Berkeley IKatzXVj. It

consists of four primary components. illustrated in Figure 7. The top level of abstraction contains

a synthetic reference generator. Table 2a shows the workload generated for the simulations. This

workload is based on access statistics measured on an airline-reservation OLTP svstem

[Ramakrishnan921. The requests produced by this workload generator are sent to a RAID.4tripmiv

driver, whose function is to translate eachi user request into the corresponding set of disk accesses.

Table 2b shows the configuration of our extended version of this striping driver. Low%-level disk

operations generated by the striping driver are sent to a difisk•-inu/ati-m inodtu. which accuratelv

models significant aspects of each specilic disk access (seek time, rotation time. cylinder layout.

etc.). Table 2c shows the characteristics of the 314 MB. 3-'11 ich diameter IBIM 0601 Model 37(

(Lightning) disks on which the simulations are based I [BM0661 1. At the lowest level of ahstrac-

tion in raidSim is an event-driven .uiulawr, which is invoked to cause simulated time to pass.

As disks Let smaller and less expensive, and a.is systems demand increased I/( ) rates., the mll-

her ol' disks in a typical array will increase. For this reaso n. we 1toCUS Mir Simllatit ins Ii a1'ray0

sizes that are larger than are common today. Specilicallv. the simulations reported in subsequent

sections use a default array size of 41) disks. In order to verify that our conclsions aire not specilic

to a particular array size. we also ran 20-disk simtulations in most cases. The perltoimance ot the

2(0 disk array was identical to that of the 40-disk array for a given user workload measured in

accesses per second per disk, and so we report only the 40-disk results here.

All reported simulation results represent averages over live independently seeded simuhtlion

runs. In all cases, this resulted in very small confidence intervals (a Jew percent oil the meano and

so the performance plots in subsequent sections do not report these actual intervals. For sinmula-

tions of) Jault-Iree and degraded-mode arrays (refer to Section 7). the simulation was not termi-

-- . im~mmn I I I l I Il • I



Table 2a: Workload Parameters
Access type 17( of workload Operation Size (KB) Alignment (KB Distiribuitin
1 8017( Read 4 4 1 llilI )F1l
2 16'1 Write 4 4 tfl1lt)1Ili

3 217, Read 24 24 1 ml,,niml
4 2'(7 Write 24 24 U nilorm

Number of requesting processes: 3 x (number of disks)
Think time distribution: Exponential, with mean varied to adjust offered load

Table 2b: Array Parameters
Array size: 40 disks
Stripe unit size: 24KB
Reconstruction unit: 24KB
Head scheduling: FIFO
User data layout: Sequential user data -> sequential urn is ()I sCequteltial parily slipe.
Data/Parity lavout: Block-design based
Disk spindles: Synchronized

Table 2c: Disk Parameters
Geometry: 949 cylinders. 14 heads, 48 sectors/track
Sector size: 512 bytes
Revolution time: 13.9 ms
Seek time model: 2.0 + 0.01. cvls + 0.46 .y'ls (nis. •vIs =sneck distance in c\ linders-I i

2.0) ms min. 12.5 nis averac. 25 .ns max
Track skew: 4 sectors
Cylinder skew: 17 sectors
\MTTF: 150.000 hours

nated until the 95/', conlidence interval oin the user response time had fallen to less than 3; ol the

mean. For reconstruction-mode runs, the simulation was terminated at the completion of recon-

struction. All simulation were "warmed up" by running a few accesses before initiatiin the collcc-

tion of statistics lfor that run.

6. Algorithms for lost data reconstruction

A reconstruction algorithin is a strategy used by a background iec )nsti-ticlon pr)ccs.',, I

reg~enerate data resident on the failed disk and store it on a replacement. In this section we evalu-

ate two such algorithms, and then report on a study investigating the effects of modifviig the s,11e

of the recon.struction unit. which is the amount of data read or written in each recoinstructiotni

access.
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6.1. Comparing reconstruction algorithms

The most straightforward approach. which we term the .ýrrilw-oru'ntcd alg(milihm. is as I (-

lows:

for each unit on the tailed disk
Id. Ientify the parity stripe to which the uinit helmngs.
2. Issue low-priority read requests 0)r all o)ther nitls In stripC. inCluding 1he palu\.,, tllhlt1
3. Wail until all reads have completed.
4. Compute the exclusive-or ovcr all units read.
5. Issue a low-priority write request 10 th1e rCplaceniCeni disk.
6. Wait for thie write to complete.

end

This algorithm uses low-priority requesLs in order to m1l11m1i/1e th1C mllpact Of ec~ irteti i

on user response time. since commodity disk drives do not generaI1N support an\ himt I pr'11 p-

tive access. A low-priority request is used even for tile write to the replaccmcnt disk. since' Ohw,

disk services writes in the user request stream as well as reconstruction wirit', 1Itdlantd-121.

The problem with this algorithm is that it is unable to consistentlv 11t1i/.e all disk hauld Idth

not absorbed by user accesses. First. it does not overlap reads ol surviving disks \V1th \wrltcs ti the

replacement. so the surviving disks are idle with respect to reconstruction during the wrIte to the

replacement. and vice versa. Second. the algorithm simultaneously issues all the i-econstrctionL

reads associated with a particular parity stripe, and then walis tor all to co•plete. Some ol, these

read requests will take longer to complete than others. since the depth tIf the disk queues and di.sk

head locations will not he identical for all disks. TFherelore. during the read phase of[ the recon-

struction loop, each involved disk may be idle from the time that it conmletes its own reconstlric-

ton read until the time that the slowest read completes. Third. in tile declustered parit.y

architecture. not every disk is involvud in the reconstruction (l every parity stripe, and So son',"

disks remain idle during every iteration of the algorithm.

These deficiencies can be partially overcome by paralleliiing this algorithm. that is. hy slimul-

taneously reconstructing a set ot P parity stripes instead of just one I Holland921. but this does 110(

guarantee that the reconstruction process will absorb all the available disk handwidth. Disks wav

still idle with respect to reconstruction biecause the set of P parity stripes tinder reconstrtiction at

any point in time is n(it guaranteed to use all the disks in tile arrav. Furnhermo( re. the numlber of
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outstanding.L disk requeLISts each Independent rCconStruction po ()CCSS Imanuiai us varies Its acceSSes"

are ismued and complete. and so thle numb11er Of SuICh pr-OCCSSCS m 1List K large2 i1t Ihe aray Is to hC

consistentlI utilized. Finally, at large Iinumbcr of1 reconstrutction pro cesses r'e(.i1.i ic a alaree amontO11O

hUtftfr miemory 'In thle host or controller.

A better approach is to restriucture the reconstruction algorithmi as at di.%k-orcwc'. Instead ()I

stripe-or-icnted, process I Mercharil92. HL-1o93. H-olland93 I. Instead of creating inc tect nstruct ( ii]

process, the host or array controller creates C processes. each associated- with one disk. Each tol

thle G- I processes associated with at SUrviving disk execuLte thle 1olowHine 10011

t~epeat
I Find thle lowest-numbereCFd unit On this disk that is needed ltoiic nt o 'i
2.Issue a low-priOV rItyrIjueSt to read the indicated unit linto at hutCEr
3.Wait lor thle read to comlplete.

4. Submit thle unit's dat a itt a cerntralied huffer managero hor subsequeint XOR.
until (all necessary' units have been read)

The process associated with the replacemient disk execuLtes:

repeat

I Request a ute t fully' O re.11IC~onstnicted data from tlche IIl buter ifanaCer. blokcking liiton.
2. Issue at low-priority Write oF the butfer to) the replacincient disk.

3Wall lor the write to comlplete.
Lint il (the F'ailed disk has been reconst ru1CeLl)

Inl this wvay thle bulffer manager pro vi des a central repository foir data tronit par~ity v tripes that(

are CLirrcntlv '*under -ecoulStR~iction.- When a new b~uffer arrives from a SUirViving-d isk process.

the buiffer mianager XORs the data 'into an aCC~nmlilating, '-surn"for that parity str-ipe. and notes thec

arriv~al () a uinit for the indicated parity stripe from the In dicated disk. When it receives i a eLl Ltest

fro m the replacemient-disk process it searches 'its data StR~tct~rCS 10r at paui tV Str'iPC lor which all1

units have aTi~uVed. deletes, the corresponding butte~r troni its active Ilist and reCturnIs this bulerI to

[the replacem-ent-disk process.
7

The advantai'e of the disk-oriented approach1 is that it is able to maintain one lo)w-pri.ori t\

7 When a disk is mnitientarilIv idl~ed due io randmiti fl uctuat io ns inl thle user wI rkto~ad. it is po ssible
1t4)r a ret' nstructi in prt :cess itt -'race aliead'' )iF the o thers and co nsu me a l arige nuii iber 1)t biu ers.
This cou ldt pt 'ten iatl tlvead tit Increased buller stalls because other pri'cesNse WO~ Li ( be LMINabl to
acqjuire huillrs whenl nccdted. We have not obhserved1 this ito he a problem Inl Miur siiiulatii'is. bUt 1t
opultd be ;id(resscl by, sthiwin (ir ,it ipping any rect 'struction process that gets 100 'Itar ahead [)I the
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Figure 8: Comparing reconstruction algorithms: (a) reconstruction time and (h) averaCe user
response time during reconstruction.

request in each disk's queue at all times. which means that it will absorb all of the arravys hand-

width not absorbed by user accesses. This is demonstrated in the simulation results of Figure X.

which plots the reconstruction time and average user response time versus the declustering ratio

(a) for 1-way, 8-way, and 16-way parallel stripe-oriented reconstruction. and for disk-oriened

reconstruction, in a 4()-disk array using the parameters in Table 2. This tioure shows that the disk-

oriented algorithm makes more efficient use of the system resources: reconstruction time is

reduced by up to 4()17, over the 16-way parallel stripe-oriented version. while the average and 90t)Jh

percentile response times remain essentially the same. independent of the value of x. Low-paral-

lelism versions of the stripe-oriented algorithm yield slightly better user response time because

they cause disks to idle fairly frequently, allowing user requests to more often arrive to lind ain

empty disk queue. This does not happen in the disk-oriented algorithm because recotnstruction1

accesses are always initiated as soon as any disk becomes idle.

A P-way parallel stripe-oriented algorithm requires PG controller memiory buffers. while a

disk-oriented algorithm requires about 2C or 3C. Thus except at very low declustering ratios, the

disk-oriented algorithm uses less buffer memory than the stripe-oriented algorithm with signili-

cant parallelism, and yet delivers faster reconstruction. In the example 40-disk array with (x=().5.

the disk-oriented algorithm requires about 100 buffers. while the 8-way parallel stripe-oriented

algorithm requires 160. Figure 8 shows that the disk-oriented algorithm is able to reconstruct
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about twice as last under these conditions.

Furthermore. because the total buller requirements ol the disk-ori ented ;1121 t1r1hn ai e Icla-

tively small, the required memory can typically he borrowed from the c ,ntrolle I • hI'i hullkI'

cache. 11 a reconstruction buffer is the size Al one track (as indicated tihe results o1 tihe nle\t so:-

tion) and a disk contains 10(,(X) tracks. then tihe 1(0) bulfers rCquired for (hc cxaanple 4()-disk

array total about 17( of the size of one disk. I bhuffer memory cost., 25 times as much per mnegal-

byte as disk. a bulfer cache of I01/, of the size of onee disk co sts abLhout 6/"' o tihe lotal disk Ctst WI

the example array, and so is affordahle in either tihe host or controller. The I', needed to( llHect

reconstruction rapidly can thus he borrowed to 2reatlly speed reconstrutlCit)n, iii n iSt Ca.Ses, wi th('Uit

dramatically altering the performance of tihe cache.

Because of its superior reconstruction time characteristics, the disk-oriented aLorilthmn is

used for all the following performance analyses.

6.2. Unit of reconstruction selection

In the algorithms presented so far. the reconstruction processes read or write otine Un1it per

reconstruction access. Since the rate at which a disk drive is ahle to read or write data increases

with the size of an access, it is worthwhile ito investigate the bene•its of usiiW reconstruction

accesses that are different in size from one data unit. that is. to decouple the size 0f the reconstruc-

tion unit from that of the data unit. The block-desien hased layout dlescrihed ab•ove re.'quirCs a sim-

pie modification to support this decoupling. This section describes this mlo)dillcaltion and then

investigates the sensitivity of failure-mode perlormance to tile size of the reconstruction utnit.

Referring hack to Figure 4. assume that the reconstruction unit is tour talmes as lal-'e as the

data unit. and that disk number I has failed. If lthe reconstruction process at, some point rtads ltour

consecutive units starting at offset zero on disk 2. the data that is read contain.s data uit 1).D'. I/

which is not needed to reconstruct disk I. In general. since tihe units necessary to reconstruct a

particular drive are interspersed on the disks with units that are not, the reconstruction process

must either waste time and resources reading unnecessary data. or it miulst break tip its accesses

into sizes smaller than one reconstruction unit, which results in .substantially less elf icienf d-,a

transfer from the disks.
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Figure 9: Doubling the size of the reconstruction unit.

This problem can he eliminated by repeating the I uple assignment pattern enough times to

pack multiple data stripe units into a single reconstruction unit. This modilied layout is illustrated

in Figure 9. where the reconstruction unit size is twice the data unit size. While Figure 4 advances

to the next tuple in the block design after each parity stripe, the modified layout advances after

every n parity stripes, where n is the reconstruction unit size divided by the data unit size.

Note that the layout stripes data units across reconstruction units. instead of lilling each

reconstruction unit with data units before switching to the next. fn other words. the first tuple is

used to lay out substripe (), the second tuple for substripe 1, and so on up to the fifth tuple for sub-

stripe 4. At this point, the first tuple is used again to lay out substripe 5. and so on up to suhstripe

9. which completes the block design table. The process repeats in the next table, and the full block

design table is constructed in the same manner as in Figure 5. Switching to the next tuple in the

block design after each suhstripe rather than after each parity stripe avoids excessive clustering of

consecutive user data units onto small sets of disks.

The above modification can of co•trse he extended to pack an arbitrary, numlher of data units

into each reconstruction unit. With this modilied layout. each reconstruction unit occupies a con-

tiguous region on each disk. and so can he read in a single access without transierring extraneous

data.

Using a large reconstruction unit speeds reconstruction because disk accesses are more elli-

cient bOr large transfers than for small ones. but it lengthens user response time because large
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accesses monopolize the disks for longer periods of time. To quantify this trade-off. Figure 10)

plots the cumulative response time degradation during disk-oriented reconstruction versus the

declustering ratio for a 40-disk array driven to about 50'/, fault-free utilization using the workload

described in Tahle 2a. The cumulative degradation is the product of the reconstruction time and

the increase in average user response time during reconstruction over the fault-free response time.

By this "total extra wait time" metric, the increase in efficiency obtained by increasing the size of

the reconstruction unit above one track does not compensate for the elongation in response time it

causes. Figure 10 establishes that the appropriate reconstruction unit is approximately one track.

and so all thle reconstruction simulations in subsequent sections use this size.

S60 a -E] I Track

0 GI-0 5 Tracks
50 A-6 I Cylinder

: 40

". 30

20

"10

0.0 0.2 0.4 0.6 0. 1.0
Declustcring Ratio (r.)

Figure 10: Cumulative response time degradation during reconstruction.

CitinDet, = (AvgRespTimerw,,, 1 - A t,,RC.%pTinuf(,t,/,) j R'c a Tiic

7. Performance evaluation

This section examines the performance, in terms of throughput and response time. (1 the

declustered parity organization under three operating conditions: when the array is Iatilt-free.

when it is in degraded mode. i.e. when a disk has failed but no replacement is available. and dur-

ing the reconstruction of a disk. Declustering is intended to improve degraded- and reconstruc-

tion-mode performance without affecting failit-free perkormance. This section also examines (he

implications of declustering on the reliability of the array. Declustering exposes more disks to sec-

ond failure during reconstruction, but it also makes reconstruction much faster.
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In this section we will answer two specific questions. First, how does a parity declustered

array compare to an equivalent-size non-declustered array that uses the left-symmetric RAID

Level 5 layout in multiple groups of disks? In this comparison, the two systems have the same

number of disks and contain the same amount of user data. Second, once we understand when to

use declustering at all, what benefits can be obtained by reducing the value of G for a lixed num-

ber of disks in the array? Reducing G results in less available user data space, but improves the

failure-recovery performance substantially. In this latter exploration we include the case where

G = 2. which corresponds to mirrored disks with the backup copy distributed over the array. For

completeness, we also include the case where the mirror copy of each drive resides on exactly one

other drive rather than being distributed. All the simulations that follow use the workload, array

configuration, and disk model described in Table 2.

The results show that parity declustering is a better solution to the failure-recovery problem

than the traditional approach of breaking up an array into multiple independent groups. They alsso

show that parity declustering can reduce reconstruction time by up to almost an order of magni-

tude over RAID Level 5 for low values of the declustering ratio. while simultaneouslv redtucing

user response time by a factor of about two,

7.1. Comparison to RAID Level 5

One way to handle the problem of very long user response time during failure recovery in a

RAID Level 5 disk array is to stripe user data across multiple groupsX. The overall average perftor-

mance degradation experienced when a drive fails in a multi-group array is less than that of a •in-

gle group array because the load increases on only the drives in the allected group. This means

that on average only one access in Ngroups experiences degraded perfornmance, where , is

the number of groups in the array.

This section compares a multi-group RAID Level 5 organization to a single-group declus-

tered-parity array. We keep constant the fraction of the array's capacity consumed by parity by

X. Following the terminology of Patterson. Gibson. and Katz IPatterso nxI . a group inI a sinule-
failure tolerating array is a set of lisks that participate in a redundancy enctiditg to tolerate at iiu Ost
one Concurrent failure. In this sense an array with parity decluslere(I over all disks is a siniwc
group.
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Figure 11: Comparing RAID Level 5 to parity declustering: lault-Iree perlormance.

tixing the size of a parity stripe at 1) units. This means we compare a 4-group 9+1 RAID Level 5

((x=1.0) to a C=40, G=10 declustered array (oc=0.23). In Section 9 we revisit the implication.,, (f

larger array sizes by partitioning very large arrays into multiple groups without varying the

declustering ratio.

7.1.1. No effect on fault-free performance

Figure II plots the average and ninetieth-percentile user response time vs. the achieved user

I/O operations per second when the declustered parity and RAID Level 5 ;ITaVS arC lault-reCe.

This ligure shows that for OLTP workloads. declustering parity causes no i'atlt-frece per ormance

degradation with respect to RAID Level 5.

7.1.2. Declustering greatly benefits degraded-mode performance

Figure 12 plots the respective disk arrays' user response-time against achieved useCr I/(S per

second when each array contains one failed disk. hut reconstruction has not vet been started. At

low workloads the two organizations perform identically. since the extra I/)s caused by accesses

to the failed disk's data can easily he accommodated when disk utilization is low. As the workload

intensity climbs, the failure-recovery problem in RAID Level 5 arrays hecomes evident: tie

RAID Level 5 group containing the failure saturates at about 6MX) user I/OS per secCond 115 u.ser

I/Os per second per disk), and forms a system-wide perlormance bottlencck. Because the declIIS-

tered-parity array distributes lailure-induced work across all disks. it is able to deliver about 251,

27



320
SAr40/I10 Dec1: 90'/4

280 "-A40/10 Decl: avg
-4x 9+1 RAID5: 90/',

-240 * r4x 9+1 RAID5: av,

4 160

12()

SgsO

40

0 2(X) 4(X) 6(X) 8(X) 1000
Usecr I/)s per Second

Figure 12: Comparing RAID Level 5 to parity declustering: degraded-mode performance.

3 60 & A.. 4 0/10 D e c : 900,/, , -

320 "-r-A40/l(1 Dcl: lv
280 7.' 4x 9+1 RAID5: 90(/,%

. "4x 9+1 RAID5: avg
- 240

-I 0
1600

120

80

40

0 200 49)0 60 800 000

User I/( )O per Sccomd

Figure 13: Comparing RAID Level 5 to parity declustering: response time during reconstruction.

more 1/Os per second while still delivering a 90th percentile user response time o0 aboullt I5 ' MCI

the lault-free case.

7.1.3. Declustering benefits persist during reconstruction

Figure 13 shows average and 90th percentile user response times in r•'com.StrmctiuI; m1odc: that

is. while reconstruction is ong.. ng. In contrast to the degraded-mode perlormance shWion in

Figure 12. Figure 13 shows that at low user workloads, parity declustered arrays deliver , slighlly
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worse response time in reconstruction mode. A multiple group RAID Level 5 array sullers less

penalty for reconstruction at low loads than does a parity declustered array hecause many disks

experience no load increase and those that do see an increase have plenty of available bandwidth.

But, because all reconstruction work is performed by only one group ofi a RAID Level 5 multi-

group array. this group quickly becomes saturated as the on-line user load increases. Once a group

in the RAID Level 5 array is saturated, its long response times dramatically increase average anld

90th percentile response times for all user processes.

Turning to the issue of time until reconstruction completes, Figure 14 illustrates the heart of

the failure recovery problem in RAID Level 5 arravs. Since the workload increases dramatically

on surviving disks in the group containing a failed disk. and since these are the only disks that par-

ticipate in recovering the contents of this failed disk. reconstruction time is very sensitive t) the

fault-free user workload. The declustered parity organization was designed to overcomne this prob-

lem by both reducing the per-disk load increase in reconstruction and utilizing all disks in the

array to participate in this reconstruction. In other words, a RAID Level 5 array has reconstructiun

bandwidth equal only to the unused bandwidth on the disks in one group. but a declustered parity

array provides the full unused bandwidth of the array to effect reconstruction.

The minimum possible reconstruction time is the time required to write the entire contents ol

the replacement disk at the maximum bandwidth of the drive. The simulated 32() megabylvt drives

support a maximum write rate oI approximately 1.6 MB/sec. and so the milninmum possible recoii-

struction time is approximately 2MX seconds. In Figure 14. recCon'strticio•n lime in the dL'cluslerCd
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parity organization at 6(X) user I/Os per second (about 507(/ of maximum utilization) is approxi-

mately 260 seconds. indicating that near optimal reconstruction performance is obtained. Contrast

this with the RAID Level 5 organization. where reconstruction time is essentially unbounded at

this user access rate. To emphasize. Figure 13 and Figure 14 show response time and reco1nstruc-

tion time in the same on-line reconstruction event - they show that parity decltuscring provides

huge savings in reconstruction time as well as savings in response time for modcrately and

heavily loaded disk systems.

7.1.4. Declustering also benefits data reliability

Our linal ligure o1 merit is the probability of losing data because of a disk lailurC )ccturrlii

while another disk is under reconstruction. Assuming that the likelihood olf a disk' fa ilure is inde-

pendent ol that of each other disk: that is. assuming that there are no dependent disk lailure modes

in the system. Gibson and Patterson [Gibson93] model the mean time to data loss as

MTTF.k
MTTDL Nisk

Ný'ruup!.N,ii..k..per.roup ( N1iA. p,,r•,,,p - I ) M TTRtri,p

where MTTFsivk is the mean time to failure for each disk. N,,r s is the number of eroups In the

array, Ndisksp(erk,,rouj is the number of disks in one group G r in RAID Level C

arrays and Ndisk.Vrrq = ( in parity-declustered arrays). and ITTRh, is the me,,1an 1lme to

repair (reconstruct) a failed disk 9 . From this. the probability of data loss in at time period T duc Io

a double disk failure condition can be modeled its

P (data loss in time T) = 1.0 - e-

Figure 15 shows the probability of losing data within 5 and M1 years (optimistic estinitecs ol

a disk array's useful lifetime) due to a double-failure condition in each of111h two or1-aM, at •0on.

using M7TFdisk = 150)000() hours. The RAID Level 5 arTay is more reliable at low user access

rates because a multiple-group RAID Level 5 array can tolerate multiple simuIltaneotis disk alil-

ures without losing data as long its each failure occurs in a different group. In contrast. thCre are

9. Gibson and Palterson treat dependent lailure miodcs and the ellects of on-line spare disks in
depth. As nearly all of thal work applies here directly, we will only (fescrihe the siniple ,id illus-
Irative case of independent disk failures.
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no double-failure conditions that do not cause data loss in a declustered parity array. H-lwever. as

the user acce'"• rate rises, the reconstruction time. and the resulting probability o1 data lss,. rises

much more rapidly in the RAID Level 5 array. For the example arrays and workload. 1hc dcclus-

fered parity array becomes more reliable at about 10 user accesses per second per disk (a lault-

free utilization of about 41)c/, ). This is signilicantly less than the user workload recquired to Saturate

the RAID Level 5 array during reconstruction (about 14 accesses per second per disk).

7.1.5. Summary: declustered parity allows higher normal loads in on-line svstems

In this section we have considered the effects of replacing a multi-group RAID Level 5 arra\'

with a declustered parity array of the same cost and the same user capacity. Essenlial Ibr its vOabil-

ity. declustered parity achieves the same fault-frce performance as an equivalent RAID) leCel 5

array. Its advantage is that it also supports higher user woikloads with hower response lime in hoWh

degraded and reconstruction mode, has dramatically shorter reconstruction time. a'nd at m1odcraic

and high user workloads, has superior data reliability. This makes a compelling case o)r the use o)l

parity declustering in on-line systems that cannot tolerate substantial deeradatidI dun1rg ailore

recovery.



7.2. Varying the declustering ratio

In contrast to the prior section which showed that a single group alTay with a declustering

ratio (c) between 0.20) and 0.25 has substantial advantages over a multi-_Igfp array with a declus-

tering ratio of' 1.0 (RAID Level 5). this section examines the effect on lailure recover\ perl r-

mance of varying the declustering ratio (a) in a fixed-size single-group array. Because the size ()

the array. C. is fixed, varying the declustering ratio (oa = (G-1 )/(C- I)) is achieved by varying the

size of each parity stripe. G. This determines the parity tverhead. 11G, and correspondingly. the

fraction of storage available to store user data. (G- I)/G. As oa is decreased Iro•m I .0. the user datta

capacity of the array decreases but the failure-recovery pertormance improves since tile total lail-

Lire-induced workload decreases. We shall show that declusterinc ratios larger lthan 0.25. which

provide low parity overhead, yield much of the pert'rmance henefits o) tile example ill the last

section. We shall also show that in systems very sensitive to performance during lailure recovery.

declustered mirroring (G = 2) is a special case with minimal declustering ratio. high parity vtwr-

head, and failure-recovery performance advantages unavailable in most other declustered organi-

zations.

We consider the same array size (40 disksl. and report the perrlrmance of the arraN.s om Oh

workload described in Table 2a. using a fixed user access rate of 14 user I/Os per second per disk.

This rate was selected because it is approximately the maximum rate Ifor this workload that thie

arrays can support using a RAID Level 5 layout (M = I.0). It causes the disks to he utilized at

slightly less than 501/, in the fault-free case.

The arrays are evaluated at a = 1.0. az = 0.75. a = 0.5. Ot = 0.25, and two special cases G = 3

and G = 2. The case G = 3 is sitnilicant because when a parity stripe contains only two data units

and one parity unit, it is possible to improve small-write performance by replacing the ormnial

four-access update (data read-modily-write followed by parity read-mnodify-write) by a three-

access update. In this case. the controller reads the data unit that is nut being updated. computes

the new parity from this unit and the unit to he written, and then writes the new data and new par-

ity.

The case G = 2 is important because it is equivalent to disk mirroring, except that the backup

copy of each disk is distributed across the other disks in the array instead of heing located on at
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Figure 16: Varying the dCclustering ratio: user response lime in fault-Iree mode.

single drive. For comparison, the graph:; also include the case where the backup cOpy' is located

on a single drive. To distinguish between these two, we refer to the case where the backup copy is

on a single disk as "mirroring". and the case where it is declustered as the "'(;=2"" case-

In both mirroring and parity declusterine with G = 2, the four accesses associate(d with a

small-write operation are replaced by two: one write to each copy of tle data. Another optimila-

tion also applies: since there are two copies of every data unit. it is possible to improve the perlor-

mance of the array on read accesses by selecting tile "'closer" of tile two copies at ihlime the

access is initiated I Bittong8]. The raidSim simulator contains an accurate disk nmdCl. and NO \wC

implement this as follows: when a read access is initiated, the simulator locates the two copics

that can be read and then computes the completion time of the request for each () tile two possiblc

accesses. This computation takes into account all components ol the access time (LlutetieiiL. ,eCk-

ing. rotational latency, and data transfer). The simulator selects and issues tile access that will

complete sooner. We reler to this as the sho/-test access optimization. We will see that these opti-

mizations can be significant for performance, hut they only apply in tile (G=2 and (;=3 cases.

which are expensive in terms of capacity overhead.

7.2.1. Fault-free performance: benefits of high overhead optimizations

Figure 16 shows that the response time performance of a fault-free array is independent ol t(

in all cases except G=2 and G=3, where the above-described optimizations can bie applied. This
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Figure 17: Varying the declustering ratio: user response time in degraded milodc.

figure confirms the result of' Section 7. 1.1 that declustering parity does not ilegativelv all ect ault-

free performance. Similarly, declustered parity with G=2 performs essentially identically to mir-

roring. Figure 16 does not show a large benefit for the three-access update when G=3 because the

OLTP workload used is dominated by read rather than write operations. Hovever. lor (;=2. the

combined response-time henelit of' a two-access update and the shortest access oplili/atioll I.,

close to a savings of 40(7 for average response time, and a savings of 20", for 90th-percentile

response time. Thus for workloads such its OLTP that are dominated by small accesses. the mlain

consideration for fault-free performance is whether or not the value of the optimitzationIs available

in the G=2 case warrants the large capacity overhead it incurs.

7.2.2. Degraded-mode and reconstruction-mode performance: declustering at its best

Figure 17 demonstrates the declustering ratio's direct ellect oi degradedi-mode per)lormanIuc

of an array. As the declusterine ratio, (x. ranges down from I1.) the array's response time decreases

almost linearly to a minimum that is ahout half of its maximnunm (at o= I .()?. ( ' mparing Figure 17

to Figure 16. the minimum degraded-mode response times that occur with small declus(crinu

ratios are little degraded from their fault-free counterparts. This lack ot degradation at! low (I

occurs because reconstructing data on-the-Ily is adding very little to each surviving disk"s utiliza-

tion. H-owwver, when oX=l.() the degra(.-d-nmode ttili/ation is close to I( )() Ibecause this read-

intensive user woirkload induces it lault-Iree utilization of slightly less than 5( )0,. I lenc,'. r'sp.losc
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time is dramatically longer when de(araded than when t-ault-frece.

User response time during reconstruction shows essentially the same chai-acterlsiscs as uscr

response time in degraded Mode hecause User accesses are ienstri ct pri or t IN oeiNrci siu

lion accesses, and so reconstruction is just a little more load on each survivine, disk. Howevecr.

Fig~ure 18 shows that reconstruction time decreases by an order ofmnagnitude as (f. drops from 1.0

to 0.2. The shape of this Curve is determined by the interaction of two separate bottileeck's: at

hiLzh (x the rate at which data canl he read tron survivineL disks limits r'econistrcion10 1 rate. Niii. 11

low (x the replacement disk is thle bottleneck'(). Sin1cC hi 1h~ dCciLuSerIiiw ratio) cauIses slrv V\ 1111

disks to he Saturated with work. reconstrcionC61 time fails off steeply with decreasinw U.. Ilattellinh

out at the point where the replacement disk becomes Saturated with recconstruction writes.

Finally, reconstruction time is much long~er for m irro ringi thani lor- dCCIlISC- tWtrdpa ~it h

G=2 because a decILustered array has the avwrei-,ate unused bandwidth of the entire- arrjay availlable

to read blocks of the hackup copy. while a m irr( red array has only thle bandw-idth ()I a si iidc disk.

The reconstruction time is not as iont! as in the case of (x= 1.0 ( RA ID Level S5 because in i rr( no 11

handles User accesses more efficiently.

10. It the array has on-line spare disks. 1his bollleneck mnay he chiliunalcd. allIowingiWt le~ilstluci woll
line lo he further redfuced. hy distribut ing ihe capacity' of spare disks thrmluh tt(e ra
lMenon92h. NL'921.
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Figure 19: Varying the declustering ratio: probability of data loss within (a) 5 years and (bh I()
years. Note that the Y-axis is log-scaled.

7.2.3. High data reliability: another advantage for declustered parity

Figure 19 shows the probability of losing data within 5 and 10 years due to a disk failure

occurring while the reconstruction of another disk is ongoing (refer to Section 7.1.4). Decrea.,ini!

reconstruction time by decreasing the declustering ratio in an array directly decreases the proba-

bility of data loss in any time period. This figure, then. is largely determined by the data inl

Figure I 8, except that the mirroring case has substantially lower probability of data loss over the

given time periods. This is because the mirrored conliguration can tolerate many simultancotis

disk failures, so long as each failure occurs in a distinct mirror pair. In the dCclusterine cases.

including G=2. the simultaneous failure of any two disks in the array results in data loss.

7.2.4. Summary

In contrast to parity declustered arrays with lixed declustering ratios determined by a lair cost

comparison to multi-group RAID Level 5 arrays in Section 7. I. this section examined the choices

available if an array's declustering ratio is varied. We found that declustered mirnoring (the "'(;=2

case), although expensive in terms of capacity overhead, offers special benlfits Over declustered

parity layouts with slightly higher declustering ratios. Alternatively, if lowering cost or overhead

is of prime concern, then a declustering ratio of ).,5 is of particular interest. It provides half the

benefit for improving degraded- and reconstruction-mode performance and nearly all the benelit
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for reducing reconstruction time and data reliability while cocstine onlt. tIhe parit. (i% ehceiad

of a single group RAID Level 5 array.

8. Work reducing variations to reconstruction algorithms

Muntz and Lui IMuntz9(1 identilied two simple mnodilicatiMns to a reIt inOStructUnai thu.

each intended to improve reconstruction-mode performance or reduce reconstruction time h\

reducing the total work required ol surviving disks. In the first, called n+dircdn' tiot rif'ad\, uSer

read requests for data units residing oin a failed disk that have already been reconllstrictCd aic ,er-

viced by the replacement disk instead of invoking on-the-fl' recon.struction aw is dine in dIaIdeI

mode. This reduces the number of disk accesses needed to service the read m•nw (;-I it) I

Although this seems to be an obvious thing to do. we shall see that it can lenItheiicin irstruct,,rt- in

time. In the second modification, pii,,yhbackin,; O+t writes. when a u.scr ieCad reqCeSt .ca',, a data

unit to be reconstructed on-the-Ily, that data unit is written to the replacenment drive as wecll as

being delivered to the requesting process. This is intended to speed reconstruction by riducine the

total number of data units that need to be recovered, but in the 1to lhwine evaluation0 it \% II Iturn mOut

to have little effect.

Additionally, there are two ways to service a user write to( a data tUnit khose cONt.lnlts, h 110 1 n

yet been reconstructed. In the first, the new data is written directly\ to the replacem'lecnt di\ e. and

the parity updated to reflect this change. In the secCond. olyV the parity is, updatCd: the data i, ft it

written to disk at all. Figure 210 illustrates the two approaches: in the first method the ne1% dta1,1 is"

written to the replacement disk. and the parity is updated by reading all the Ither uui.,, in lthe patr-

ity stripe. XORing them together with the new data, and writing the result to the pant\ unit. In the

second method, the parity is updated in the same manner as the first hptill. but the ne1\ data is Ilni

written to the replacement drive. In the latter case, the data uitIl being uipdtatCd reiVnsim, invah1id

until recovered by the background reconstruction process. The difference be•t'een ihs' iM1i

approaches is that the former writes the replacement disk while the latter does not. We \ |\e scnid-

ing user writes to the replacement disk (the former approach) i as a third n1OdLIHC iatiCn ihat c1an be

applied, and refer to it as the u.ser wt rites option.

These three options affect the distribution of work between surviving disks and the replace-

ment disk. When all three options are off,• the replacement disk sees inlk recontstrLct.-i i \ writes
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Figure 20: Two methods fOr servicing a user write to as-yet unreconstructed data.

Method I writes the new data to the replacement and ufidates the parity. MNt/mod 2 ttlidatc.%
On/y the, pairit." and /llowm- the background reconstruction process to later in.stall tin'• dat'
on the replacement drive.

and user writes to data that has been previously reconstructed. while the remaindcr ol'the work-

load is serviced by surviving drives. Enabling an option shifts workload from the surviving disks

to the replacement disk: redirecting reads shifIs user-read workload. piggybacking writes shifts

reconstruction workload, and enabling user writes to the replacement shifts uscr-write workload.

In a previous paper (Holland921 we analyzed the performance ol these options using the

stripe-oriented reconstruction algorithm. a 51Y7, write workload. and small striping units (4 KB).

This section revises this analysis using the disk-oriented reconstrtuction algorithm. the nmoro real-

istic and less write-intensive workload described in Table 2a. and track-sized stripe units, Lareer

stripe units have been recommended For varied workloads because they reduce the plobabilitM

that small requests require service from multiple disks arms while still allowing parallel transfecr

for requests large enough to benefit substantially [Chen9g)ht. The prior study showed that the pig-

gybacking and user-writes options had a measurable but not very significant eflfect on reco mnsiruc-

tion time. Because of the lower write fraction and the larger reconstruction unit in the new stud\.

these effects have essentially disappeared, and so we find that redirection ()I reads is the onl,

option that signilicantly influences failure-mode performance. As expected. the effects of redirec-

tion are more pronounced in the new study because of the read-dominated workload.

In the following we show at most live of the possible eight combinations of these three recon-
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Figure 21: User response time for live combinations of reconstruction options.

In the legend, R indicates redirection of reads. P indicates Ii~g,,,vbacking of write.%. W indicate.%
user-writes to the replacement drive, (0 indicates that an (oltion is off. and I indicate.N that an
option is on. The figure is d~fficjlt to read because of the overlaplping ue.s: in all plots., the 000.
0 10, and (X) I curves are essential/v coincident. as are the I10() and I c I curves.

struction algorithm options: all options off, each option on with the other two off. and all opMions

on. As we shall see. only one option. the redirection of reads option. is eliective for the workload

olfTable 2.

8.1. The effects of the reconstruction options

Figure 21 shows the average and 90th percentile user response time during recConstruction for

live combinations of the reconstruction options. This ligure shows that the piggybacking of writes

and user-writes options have little effect on user response time. To understand this. lirst note that

updating a particular unit oin the replacement drive can improve response time only if that unit is

re-accessed prior to the completion of reconstruction. However. for a random workload. the proh-

ability of re-accessing the same data unit belfore reconstruction completes is fairly small, and so

these two reconstruction options have little elffct.

Redirection of reads, in contrast to the other options. can he effective for the OLTP workload.

It improves user response time by 10-1017, when the declustering ratio is near 1.0. with its benelit

diminishing to zero as this ratio decreases. It is most effective when this ratio is large because the
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Figure 22: Reconstruction time for live combinations o1 reconstruction options.

Ret'er to Figure 21 far a description of the lehgeml.

surviving disks are heavily loaded by reconstruction. Off-loading work from these drives hv redi-

recting reads to the underutilized replacement disk improves response time by hoth reducing the

number of I/Os necessary to service a user read and by servicing such a read on a lightlv-utilized

drive. As ox is reduced, however, both these effecLs diminish: it takes fewer disk reads to service a

user read to the failed drive and the replacement disk utilization increases because thIese more

lightly loaded surviving disks reconstruct units more quickly.

Figure 22 shows the reconstruction time for live combinations of options. The piggyhackin.

of writes and user-writes options again make little difference. [n this case. it is because the work-

load is dominated by accesses that are smaller than one reconstruction unit. When a user- or pig-

gybacked-write operation occurs on the replacement disk, only a fraction of a reconstruction unit

is updated and marked as reconstructed. When a reconstruction process examines this Unit to

decide if it needs to be reconstructed. it will find that some portion ot the unit is still unrecovcreC.

The reconstruction process then has the option of reconstructing only the unrecovered portion of'

the unit, or of reconstructing the entire unit. Because there is little difference hetweein the time

taken to read an entire track and the time taken to read a track less one unit. and because many

disks cannot read two blcks on one track as quickly as they read the whole track, our implemenI-

tation always chooses the latter option. Hence, most of the potential benelits to reconstruction
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time from user- and piggybacked-write options arc lost. since these writes do not updatte entLie

reconstruction units. Moreover, at low cc, these two options actually have a nicgative cllect on

reconstruction time since they cause more work to be sent to the over-utilized replacement disk.

While redirection of reads reduces user response time during recovery at all values Of U. it

does not have the same effect on reconstruction time. Figure 22 shows that enabling this option

halves reconstruction time at (x=l..0 but doubles it at oc=(). 1. This is partly because the replace-

ment disk is over-utilized at low ox. but there is also another reason. In the absence Of1 user wo1rk-

load. the replacement disk services only writes from the reconstruction process arid writcs (0

previously-reconstructed data. Because the reconstruction writes are purely .•t'Selutellliaal. the

replacement drive experiences it very low average positioning overhead, and operates at high clli-

ciency. When any of the reconstruction options are enabled, the replacement disk incurs a silniiii-

cant reduction in its efliciency because it must service far more randomly located accesses. This

accounts for the signilicant increase in reconstruction time at low cx when the reconstruction

options are enabled.

8.2. Dynamic use of reconstruction options

As Figure 22 shows. the value of a reconstruction algorithm option depends om which part o1

the array, replacement or surviving disk. is limiting the rate of reconstruction. In addition to bei[n L

dependent on an array's declusteringi ratio. this etIect is dependent on the amount (the aileiad

disk's data so far reconstructed. Recognizing this dependence. MtUntz and Lui suggested that the

reconstruction algorithm should monitor disk utilizations and enable or disable each opthln

dynamically, depending on whether surviving disks or the replacemnnt disk constitutes a hottlc-

neck.

Figure 23 and Figure 24 show. respectively. user response time duriin reconstruction and

reconstruction time using a monitored application of' redirection of reads instead of a constant

(always enabled) application or no (always disabled) application. We have chosen to dynamicallv

apply only the redirection of reads option because it is the only option that significantI v aillecis

recovery mode performance for the OLTP workload. We refer to this dynamic reconstruction

algorithm its the mnonitored redirection option. We employ a simple nionitoring scheme: the dura-

tion of disk busy and idle periods is recorded, and every 30H) accesses a new estimate for the utili-
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Figure 23: Evaluating monitored redirection ol reads: response time.
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Figure 24: Evaluating monitored redirection of reads: reconstruction time.

/ation (f each disk is generated. If the replacement disk utilization is higher than the aveerag

surviving disk utilization, the replacement is declared the bottleneck. and redirectiOn 0ol readOf is

disahled until the next time the estimates are updated. It the opposite is true. the_" surviving' disks

arc declared the bottleneck. and redirection of reads is enahled until the next util]ization estimate

update.

As Figure 23 shows, the response-time performance of monitored redirection is aCtuallK
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worse at moderate and low declUsterinr ratios than the constant-redirection case hecause rcldirecc-

Lion of reads. uniformly benelicial to response time when enabled, is largely disabled. Fi'uie 24.

however, shows that reconstriction time is minimized because the reconstructioi rate is at all

times limited by whichever disks are the reconstruction bottleneck.

To summarize. for the OLTP workload, the only effective work-reducigW Variati ii. to the

disk-oriented reconstruction algorithm is the redirection of reads. This option inlprI(es usýer

response time by as much as 1017, - 20'.7 when the declusterine ratio is large while reducing recon-

struction time by as much as 4(),/(. However at a low declusterini ratio. redirection o) reads henc-

tits response time by only a very small amount, and lengthens reconstruction time hy over-

utilizing the replacement disk. A dynamic application o1 this option based (n monitoring disk uti -

lizations achieves much of its benefits without its costs independent o( the declustering ratio.

9. Array configuration: single versus multiple groups revisited

Section 7.1 shows that for arrays of up to about 40 disks, a single declustered group orgOani/ia-

tion yields better failure-mode performance than an organization that separates disks into a set (I

independent RAID Level 5 groups. In this section we revisit the question of when to con licure a

set ot'disks as a single group or multiple groups. where the data reliability of each eroup S inde-

pendent of failures in other groups. In particular, we are interested in how to conliCure arrays that

have more than 4() disks. In this context an array conil i uration is a set of values 10r the niun ber of

disks in a group, C. the number of units in one parity stripe. G, and the number of groups. denoted

N, rOS,,. We shall see that it is not always desirhble. and sometimes not viable, to structure a large

array as a single declustered group.

A primary consideration in the construction of large single-group arrays is their susceptibility

to data loss arising from failures in equipment other than the disks jGibson93j. For example. if the

hus-connected disk array architecture shown in Figure Ia provides only one path to each disk but

shares this path over multiple disks, the failure of a path renders multiple disks unavailable.

although not damaged. for long periods of time. We say that such a path laihlurec cnsliluies .I

dependent failure mode for the set of disks on that path. To make such an array tolerant o1 all siil-

gle failures according to criteria one in Section 4. I. these disks may noit reside in the same redun-

dancy group. A cost effective way to do this is to organize each rank of drives as an independent
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parity group. It follows then that the size of' each dec lustered gr )up (() can he n) laiLrer tha 1heC

number of cable paths in the array. With today's technology, board area and cable connector si/e

limit the number of paths t)perating in a single array to a relatively small rnumher, usually much

less than 40. In this case, layouts based on block designs and the results of Section 7. I are directly

applicable.

In disk arrays with sufficient redundancy in non-disk components. such as the fully dupli-

cated versions of Figure I. the number of disks managed as a single parity group could be much

larger than 40. In the process of conligurin such large allays, the lundamen tal trade-oIll is

between cost. data reliability, parity overhead, lault-Iree performance. and on-line lailure iecov-

cry performance. Remaining with the OLTP-like model of such an array'S w"orkload, we assume

that the goal of a configuration is to achieve the lowest cost array which meets specific I/0

throughput and response time requirements and that component disk capacity call be man1ipulated

to meet data capacity targets. In particular. to maximize throughput for a target numher Of disks.

we seek fault-free disk utilizations as high as possible while insuring that response time require-

ments are met during on-line reconstruction. The most effective method of doingi this IN to mini-

mize the increase in disk utilization during on-line reconstruction. which can he scaled h\ tile

declustering ratio. ox = (G- I )I(C- I ), because this directly inlluences the increase in load oin surviv-

ing disks during on-the-fly reconstruction in degraded-mode. Left to be determined are tile si/e of

each group in the array. C. and the number of these groups. , and the impact o)f these two

parameters on data reliability and parity overhead.

The data reliability equations in Section 7.1.4 show that mean time until data loss is inversely

proportional to group size (C). and failure recovery time (M7TR). [or a lixed array size. But given

a fault-free user workload and a declustering ratio. failure recovery time is a largely a [ unction o1

a single disk's capacity and performance as shown in Figure 14 and Figure IX. This implies that

data reliability increases with decreasing group size (which means increasing the number of

groups). However, with a fixed declustering ratio, decreasing the group siZe reduces the parity

stripe size. G. which increases the parity overhead of the array. 11G. Increasing parity overhead. in

turn, increases the amount of storage space each disk must provide. increasing overall array cost.

This is the final trade-off: data reliability against cost.
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Figure 25 quantities this reliability versus overhead trade- ll I hr various array ,IeS. usI n '

(x = (0.25 and cc = (.5. the IBM Lighiltning drives described in Table 2. [he reliabiliv mnodel in Sec-

tion 7.1.4. and reconstruction times ,iven in Figure 1 8. In general. rec)onstruci )1) lime' ma I h

estimated by simulation. as in this paper. or by usinge an analytical ni)del such a.s iha ,4l Mcrchain

and Yu IMerchant921 or Muntz and Lui IMuntz190l.

Figure 25 shows that the large arrays considered (400 and 800( disks) will have a ,to 30to

chance of losing data within 10 years when configured as a single group. Where this is too large a

risk, the array must be partitioned into multiple independent groups. When this is done. data reli-

ability can be increased by an order of magnitude while parity overhead remains benealh 20)', .

when ox=().25. and beneath l01t, when (x=0.5.

This figure also allows us to revisit the question presented in Section 4.4. In this sectico we

discussed selecting between a declustered parity layout based on balanced incomplete block

designs or based on random permutations. Pessimistically, if a declustered parity group si.e

exceeds 4(0 we cannot guarantee a small block design for arbitrary declustering ratio: for such a

guarantee, Merchant and Yu's random permutations layout can be Used. In terms ol Figure 25,

points in the lower right of the data loss probability charts correspond (o multiple group c mfligu-

rations where individual groups are not larger than 40 disks. It block designs are used, th~is 1Igure

also shows that the parity overhead can be as low as I()(/ when c = 0).25. ()r 51, when =i .5.

10. Conclusions

Redundant disk arrays, developed to insure that lost data can be recovered quickly. have thie

ability to provide on-line service during failure recovery, but often with dismal pert orimance. For

example, the 801'7 read workload characteristics of OLTP. serviced by a 40-disk RAIl) Level 5

array increases in intensity by about 60'7, during on-line failure recover',. so fault-free utili/ation

must be less than about 6()'/, if response time during recovery is to meet any realistic target. IIn [his

paper we evaluated two types of techniques for managing the performance of a redtundant disk

array during on-line failure recovery. First. we examined how the orrgani/.ation o1 data and parity

in the array determines the amount of work that must be done to recover the contents of a faoiled

disk. Second. we explored alternative strategies for executing this recovery with particular inter-

est in the trade-off between cost, failure recovery time and performance during recovCrv.
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The data Iao.v, probabilities are plottewd oil a log sIle while the (apa(itv r vel(rIh l•ad a/c is lim'ea:

The most common disk array organization used [or control line data ircabdit\' I .tl and l- IinC

failure recovery performance is based on dividine the array into m ultiple indcp'CndcnV grOups. In

thi., case most accesses will not stilfer any degradation during on-line lailunrc rec very. Vinlor•n-

nately. if a RAID Level 5 org'anization is used in each grotup, somne accesses may CxperinceI' a
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large degradation in performance. In contrast, a hit , d. ( la • .' rin,"' 1)gan i/.al1 I) h Lhll ,I/! i/

array distributes recovery work over all disks, lightly degrading the perf irmancc t1) all acceess,c.,

For the arrays we investigated, a parity declustering organiiation suppoIrts., behlfoe Saturati n. it

4()-5()( higher user workload than a cost-Cquivalent multiple-group RAID Level 5 array. When

we considered only a single group and varied the amount of the array s capacity sacriliced lbr

redundant information, we found that increased declustering of parity can reduce a\'VeLaLe and

90th percentile user response time by a factor of two in both degraded mode and recOnstruction

mode. and can reduce reconstruction time b1 up to an order of magnitude. Parity decLuste1riiw.

then. provides a powerful and flexible mechanism 1-r balancing Cost. It lalure rct.%overy per! or-

mance. and reconstruction time.

For either organization of' data and parity in an array., a second important techn1iqueL I0r

improving the failure-mode performance is to tune the reconstruction algorithm. We presented a

disk-oriented reconstruction algorithm, and demonstrated that it yields up to 40',( laster recon-

struction than the more common srripe-orientd approach. while maintaining Milar uertisCr respon-

siveness. We also investigated the benefits and drawbacks of three mlodiliications to the

reconstruction algorithm, concluding that for read-dominated workloads such aIs haVe been

observed in OLTP traces. the only option that has significant impact on failure-mo1de per! ormance

is whether user reads to previously-reconstructed data were serviced by the replacement disk or

by the surviving disks (the redirection ,/reads option . Since the bene tit )I redirectII in is .'C•( iNo,-
ration-dependent, we analyzed a proposed technique for optimally controlling its applicattin

based on observed disk utilizations. We concluded that the strategy does vield optimal recon1sIlruc-

tion time, but that the simpler strategy of applying redirection at for all applicable accesses allows

the system to achieve about MIX better user response time for certain conligurations.

In the final section (f' the paper we discussed trade-oils involved in determining the con!li-

ration of large arrays. returning to the question of when it is necessary to partition large arra.ys Into

multiple independent groups to achieve acceptable data reliability. We found that, in verv large

arrays, parity declustering and partitioning can increase data reliability by an order Of magnitude

while maintaining good on-line lfailUre recovery performance and requiring at capacity overhcad

for parity in the range of 5-20'1.
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There renlain several areas to explore in the topic of failure rccoverv. IHrlSt. becaueW parit\-

based redundant disk arrays exhibit smiall-write performance that is tip to a tIaCtOr o1 10our1 worse

than non-redundanlt arrays, and a [-actor oF two worse than mirrored arrays. it Is hi eh Iv desirable to

combine parity declulsteringl with larilv lo~g¶'ini I Stodolsk-v93 j or Iog'-wri,o titrc('( P/c sv.stcllo.

I Rose~h~nblun 11. hoth teCIIchiques For improving this small-write pertf.ornmancc in disk arras. Sec -

ond. the block-design hased layou~t Could he made much more general by relaxing the ruire-LIIV

mients on the tuples used for layoult. For example, It might he possible to deri-ve a balanced laymi t

F Iromn at Imkinm' or coverin .ii Mills92 I instead oF anl actual block desi en. or at layouLt 1Iil eht b

derived tromi a desi-in in which the number of objects per tUple is nlot constant. Each of these,,

approaches Would expand the rangle of coni gurationls that Canl be imnpllemented uIsing the block-

desitn-based layout presented in this paper. Finally. Implementing distributed sparing1

JMenon92b J in a declustered array Could eliminate the replacement disk aS at reconIstructIio bot-

tleneck I-or low values Of the dccILuStering, ratio (m. and perhaps y'ield extremecly fast rec~onstruLc-

tion.
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